
Summer of Nix 2021
A Program Report

Matthias Meschede

The Summer of Nix 2021 was a large coordinated effort to repro-
ducibly package Open Source software, making it readily available
and usable by anyone. The program brought together independent
developers and community enthusiasts for two months to write build
instructions with the next-generation reproducibility-first package
manager Nix. This report retells the story of how and why the
project came into being, how it got shaped by constraints and design
choices, how it was organized, what problems it encountered, and
finally what its measurable outcome was, as well as feedback from
the participants. We hope it is informative to past and future funding
organizations, organizers, and participants.

1 Context

1.1 Free and Open Source Software in a complexity crisis

The Internet — a network of peer nodes, open, decentralized, and privacy-
respecting, oriented towards human needs, built on top of an ecosystem of
Free and Open Source Software (FOSS) allowing anyone to build new and in-
novative applications. This vision is pursued by many software community and
political actors,1 and ultimately derives from the fundamental idea of a partici-
pative society of sovereign citizens. It contrasts with present day reality, where
user flows, operation and development of technologies and standards related
to computer networks are dominated by a few global actors, each with incen-
tives and history of pushing adoption of their own, closed products, services, or
software ecosystems.

Unfortunately, an ecosystem of Free and Open Software, conceived by thou-
sands of independent minds without central organization, comes with complex-
ity that tightly controlled proprietary environments can often avoid. FOSS
comes in a huge variety of programming languages, software libraries, operat-
ing systems, distribution formats and platforms, and often needs to be compiled
from source, a custom originally intended to facilitate portability as opposed to
distributing binaries which are tied to a specific operating system or proces-
sor architecture. This variety means that, in practise, FOSS applications are
often more difficult to install, configure, and run than proprietary alternatives.
Although this variety is also a feature of an open ecosystem, greatly fostering
innovation and resilience, it comes at a price, and the cost of adopting is of-
ten higher than paying for an out-of-the box proprietary, fully integrated, but

1European Commission, “The European Commission’s Open Source Strategy for 2020-2023,” n.d.,
https://ec.europa.eu/info/sites/default/files/en_ec_open_source_strategy_2020-2023.pdf.

1

https://ec.europa.eu/info/sites/default/files/en_ec_open_source_strategy_2020-2023.pdf


opaque solution. This problem has been recognized for a long time in computer
science circles.2

The package manager Nix3 is an emerging technical solution to manage FOSS
complexity, and as such, a central component to make the Open Source vision
a success. Making FOSS easily available via Nix was the “raison d’être” of the
Summer of Nix program.

1.2 Institutions and their interest in the Summer of Nix

Four institutions with different interests teamed up to realize the Summer of
Nix:

The European Commission4 (EC) was the initial source of funding for Sum-
mer of Nix via their Next Generation Internet (NGI) initiative. The goal of NGI
is to “shape the development and evolution of the Internet into an Internet of
Humans. An Internet that responds to people’s fundamental needs, including
trust, security, and inclusion, while reflecting the values and the norms all citi-
zens enjoy in Europe.”5 NGI funds a large variety of projects and subprograms
with 312 million Euro between 2018 and 2022.

TheNLnet Foundation6 (NLnet) is an independent foundation, largely aligned
with the above stated mission of the EC’s NGI initiative, funding independent
developers to work on FOSS for a long time. NLnet had been charged by the EC,
via their cascading grant mechanism, to distribute parts of the NGI funds. This
specifically concerns funds from a subprogram called NGI Zero7 that “provides
grants to individual researchers and developers as well as small teams to work
on important new ideas and technologies that contribute to the establishment
of the Next Generation Internet.” NGI Zero ultimately became the principal
source of funding of Summer of Nix. Plenty of FOSS solutions, which NLnet
funded within this setting, faced the outlined FOSS complexity challenge to re-
liably build and deploy. Looking out for a technical solution, NLnet chose Nix
as preferred packaging strategy because of its unique reproducibility guaran-
tees and other features such as composability that allow to realize their and
NGI’s wider vision. This is how parts of the funds became available to package
NGI-funded software with Nix. NLnet has approached the NixOS Foundation
to help them with this packaging effort.

The NixOS Foundation’s8 mission is “to support the infrastructure and de-
velopment of the NixOS project as a whole.” Its scope of action is limited to
essential tasks in the Nix ecosystem due to limited resources, but also because
Nix is managed to a large extent by a vibrant and self-organizing community.
The availability of funding for Nix packaging from NLnet was a welcome oppor-
tunity for them to grow and improve the Nix ecosystem. The NixOS Foundation

2YouTube, “Cynical Remarks by Linus Torvalds,” n.d., https://youtu.be/Pzl1B7nB9Kc; Roberto Di
Cosmo et al., “The European Mancoosi Research Project on Managing Software Complexity,”
n.d., https://www.mancoosi.org/.

3“Nix: A Safe and Policy-Free System for Software Deployment.” n.d.; Nixos Community, “NixOS
Website,” n.d., https://nixos.org/guides/how-nix-works.html.

4European Commission, “What the European Commission Does,” n.d., https://ec.europa.eu/info/
about-european-commission/what-european-commission-does_en.

5The Next Generation Internet website, “About the NGI Initiative,” n.d., https://www.ngi.eu/
about/.

6NLnet, “Foundation Website,” n.d., https://nlnet.nl/.
7The Next Generation Internet website, “About Ngi0,” n.d., https://www.ngi.eu/ngi-projects/ngi-
zero/.

8NixOS Foundation, “Mission Statement,” n.d., https://github.com/NixOS/nixos-foundation.

2

https://youtu.be/Pzl1B7nB9Kc
https://www.mancoosi.org/
https://nixos.org/guides/how-nix-works.html
https://ec.europa.eu/info/about-european-commission/what-european-commission-does_en
https://ec.europa.eu/info/about-european-commission/what-european-commission-does_en
https://www.ngi.eu/about/
https://www.ngi.eu/about/
https://nlnet.nl/
https://www.ngi.eu/ngi-projects/ngi-zero/
https://www.ngi.eu/ngi-projects/ngi-zero/
https://github.com/NixOS/nixos-foundation


thus started to work on packaging with individual contractors. They set up in-
frastructure such as a continuous integration server, and a task list, before
the idea of Summer of Nix even came up. But the NixOS Foundation lacked
the manpower to drive this program forward more actively. That is how the
idea of a collaboration with Tweag emerged. In this collaboration, the NixOS
Foundation was the administrating organization of the Summer of Nix, handling
contracts, payments, IT infrastructure and more, but could largely stay out of
program design and daily management.

The final actor, Tweag,9 is a software consultancy and one of the principal en-
terprise users and contributors to Nix. Tweag sponsored developer time for
project management, to actually design, organize and run the Summer of Nix.
Tweag’s interests are to improve and give visibility to Nix, and to foster and
participate in the lively community around it.

2 Designing and running Summer of Nix

This section is written for those interested in the organization behind Summer
of Nix, the program constraints, the reasons why certain choices were made,
and also what organization of such a program entailed concretely. If you are
interested in the outcome only, you can skip to Contributions.

2.1 The idea emerges

The initial idea to run a large, concentrated community program in the sum-
mer, developed as a reaction to feedback from the Nix community about the
already existing packaging effort with individual developers working indepen-
dently through the numerous NLnet projects. The existing effort was not ad-
vancing as quickly as intended, and did not appear appealing enough to attract
enough applications.

Many community members felt unqualified to work professionally with Nix, be-
cause, as an emerging technology, it often had been only a hobby for them.
Many also felt that there might not be enough support and time to learn the re-
quired skills on the fly during professional work. The entry barrier to applying
for a packaging job was therefore perceived as high.

Another aspect was that independently working on packaging was in itself not
regarded attractive work, where one could have learned new things and made
interesting connections besides delivering. This was reinforced by the fact that
many of the NLnet tools to package were still experimental, in prototype or
alpha stage, without a significant user base, and some without regular mainte-
nance.

This made us believe that an attractive program should be more exciting and
fulfilling, taking into account the non-monetary interests of the participants.

Some of the program’s principles emerged naturally from this conclusion. Par-
ticipants should explicitly have time to work, learn, and meet. Coding should
not happen in isolation but in groups, with regular discussions and feedback
about the work. Participants should not only learn but also teach their peers
to make use of their skills as far as possible. The program thus became much
more than a simple programming task, and we hoped that it would be much
more attractive for participants.
9Tweag, “Company Website,” n.d., https://tweag.io.

3

https://tweag.io


However, the challengewas to actually realize a project in the above spirit, open
for beginners, with freedom for each participant to learn, teach, experiment,
and meet while applying their creativity, ideas and newly generated knowledge
to broadly useful work. One implication of this was that we had to part with a
professional software engineer’s salary to stay within our given budget and to
deliver the expected outcome with the allocated money. Instead we decided to
set payments slightly above Google’s Summer of Code10 rates.

Another challenge was that we had only a very limited number of organizers
available to actually run the program: Even I, as the principal organizer, was
by far not able to work full time on this project, although his employer Tweag
generously supported him as they could. In addition, a small group of largely
volunteer organizers helped off and on, depending on their time. It was clear
from the beginning that a program with an emphasis on community and team
work required muchmore work and that we needed further help, possibly in the
form of a few selected people who would be experienced with Nix and willing
to coordinate teams. The idea of “mentors” was born.

The limited amount of dedicated time on the organizational side was probably
the most constraining factor throughout the program, more than the budget.
This was further exacerbated by the fact that we were starting out from scratch,
without prior experience or infrastructure. This constraint was clear to every-
one from the beginning, but the opportunity to realize the program was given,
and we were convinced we had a good chance to deliver decent results despite
the constraints.

2.2 Fixing the basics: compensation and time frame

The general idea “try running a condensed community program to make NGI
packaging more fun, effective and valuable for everyone” was thus clear, but
what was not clear was the number of applicants to expect for something like
this, and also not how to put it in practise. Initially we estimated to receive 10-
15 applications, of which certainly some would drop out. Running the program
with a team of 5-10 people seemed realistic. With this in mind, we fixed com-
pensation, the time frame from August 2nd to October 15th 2021, and defined
the mentor role, such that we could make a public announcement.

Compensation was set to a flat base rate of 2750 Euro per participant for 8
weeks of full time work anywhere within the EU — a gesture to the entity who
ultimately funded this project — and for other locations adjusted to purchas-
ing power, based on a list from Google’s Summer of Code for lack of a better
resource. We considered worldwide equal pay as well. Arguments for and
against were discussed, but ultimately we decided for adjustment, mainly be-
cause this was recommended by the European Commission and others who had
more experience than us with the implications of one over the other. It meant
that participants from EU countries with lower purchasing power received the
most attractive offering due to the flat rate, which corresponded to the condi-
tions at the NLnet Foundation’s seat in the Netherlands. Worldwide payments
were handled by the NixOS Foundation and NLnet, who are experienced with
this type of situation. One additional thought about compensation was that we
did not determine it by simply dividing the total available budget to spend it all,
but based it on a pre-existing expectation of what should be delivered for the
money. With the above compensation, a participant on average would have to
deliver roughly three packages over the eight-week period — a number that we

10Google, “Google Summer of Code,” n.d., https://summerofcode.withgoogle.com/.

4

https://summerofcode.withgoogle.com/


expected to vary significantly, as the software to be packaged was so diverse.
Still this number remained our guideline to see how this most freely organized
community event faired economically in direct comparison with independently
working developers, not taking into account the additional benefits of a com-
munity event for the developers and the community besides packaging.

Finding a time frame turned out difficult. Choosing August 2nd to October 15th
2021, we tried to target university breaks across a variety of countries. We did
not have the data to base this decision on, because we did not know where
participants would be applying from, but also because it is not easy to obtain.
Each country, and often each university within a country, has different season
schedules. The southern hemispherewas, as unfortunately too often, somewhat
disadvantaged by the fact that the program coincided with their winter break
that is often shorter than the summer equivalent, and already by the name of the
event. We were not able to find a better solution for everyone within the limited
time we had. For participants, we designed the program for 8 weeks of full time
work (320 hours) in the total 10-11 week time span, similar to Google Summer
of Code. Targeted results could be accomplished while leaving flexibility to take
vacation or start earlier or later. Wewould not grant toomuch flexibility tomake
sure that there was enough overlap for everyone to actually work together in
a team. The compensation stipend was to be paid in two stages, after working
the first 160 hours and then the second 160 hours. When we came up with this,
we expected to see tangible outcomes in the form of packages and other code
contributions in the second half of the program, and expected the first 4 weeks
to be required to get up to speed. This turned out not to be true at all.

The mentor arrangement was different. For the mentors, we kept the original
rate received by independent NLnet packagers, about 50 Euro/hour — signif-
icantly higher, and with corresponding expectations and responsibility. This
meant that we could not possibly employ mentors full time. We thought men-
tors could be present for about 8 hours per week to coordinate and answer
questions, and deliver a total of 100 hours over the 10-11 week program.

2.3 Announcement and interviews

These basic decisions were enough to announce the program on the NixOS Dis-
course11 and await applications. We did not want to shape up the full program
before knowingwhowould actually participate. Applications were handled over
email as we tried to avoid sign-ups and reduce the barrier to participation as
much as possible. Additionally we deemed email more personal than forms,
especially when expecting maximum 15 applications anyway. We also decided
to have short 15-30 minute interviews with every applicant to get a personal
connection and also to answer potential questions.

The response to this announcement was overwhelming. In total, we received
94 participant and 10 mentor applications. Given the high number of ap-
plications, email quickly became a liability, although we partially automated it
by drafting personalized messages directly from a central sheet. Getting appli-
cations and responses to these messages in a more structured form might have
simplified things, but we were now stuck with this decision.

In the application email template, we asked a few simple questions:

• Who are you?
• Why are you interested in this program?

11The NixOS discourse, “The Summer of Nix—Learn Nix While Doing Useful, Paid Work,” n.d.,
https://discourse.nixos.org/t/the-summer-of-nix-learn-nix-while-doing-useful-paid-work/12225.

5

https://discourse.nixos.org/t/the-summer-of-nix-learn-nix-while-doing-useful-paid-work/12225


• What are you able to do with Nix?
• What would you like to learn?
• When are you available?
• What time zone?
• Specific requirements?
• Optional CV

These questions turned out to be very useful to quickly assess the applicant’s
goals. Following our initial decision, we did over 100 interviews in about one
month with a team of four volunteers, who were conducting them besides their
paid work. In hindsight this was probably not worth it and quite exhausting,
but it also gave the program a very personal, respectful and warm touch. As
interviewers we got a much better feeling for the Nix community, the wishes
and goals of the applying participants, and therefore ultimately the program
that we were going to run. During these interviews it became clear that we had
many enthusiastic, extremely nice, and very knowledgeable people applying.

2.4 Total number of seats, selection process and team
building

The sheer amount and the high quality of the applications was extremely mo-
tivating, but it also put us in the unpleasant situation of having to select and
pick one good applicant over another — something we had hoped would not be
necessary.

Ultimately we had a limited number of seats in the program because of our bud-
get but its upper limit was quite generous, more than what we could and wanted
to spend in a single untested program. The decisive question was therefore
whether we could make effective use of the money that we planned to spend
and how much we needed to retain to cover the risk of falling behind the ex-
pected work. We had the choice to run a small directed program, or try running
a slightly bigger one with an autonomous team structure that could scale. We
decided to go with the latter for various reasons:

We thought a program that scales, with autonomous teams, was necessary in
any case, as we did not have the resources to conduct top-down direction. It
also seemed more enticing and in the spirit of the program as a community
event to allow for autonomy and decentralization, with opportunities to partic-
ipate, network, and connect.

The final number of program seats that we came up with balanced out a variety
of considerations: We wanted and needed to move faster than with the previous
packaging effort. Spending budget means, for funding organizations, not only
to invest optimally in terms of result quality, but to do so timely because funding
is available for a limited amount of time. This time factor is often neglected.
We were not under immediate budget pressure of having to spend the whole
amount, but we needed to speed up spending to stay on track with the goals
of the funding organizations (ultimately the EC’s NGI program). But why not
spend it all if the opportunity is good? Would there be a better one later? We
went for a compromise and decided to invest slightly more than half of what the
budget allowed, retaining a significant part to hedge against the risk of failure,
and also to have money for potential follow-up work.

With all of these reflections, and given the number of applicants, we decided to
try building seven teams that each had five developers and one mentor as
basic team structure. This meant a total of 35 participants and 7 mentors.

6



Based on the applications, we decided to add one extra mentor who would work
on cross-team tasks, which will be described later.

Then we needed to fill these teams, and, since this program was not about just
delivering code as quick as possible, but also about learning together and meet-
ing other like-minded people, we did not want to simply prioritize by experience
with Nix. In contrast, team diversity seemed to be highly desirable to actually
make a fun program in the “work-learn-meet” spirit outlined above, naturally
creating opportunities to learn from and have interesting conversations with
each other.

Unfortunately team diversity in all aspects was not easily achievable: A first
decision that we felt forced to make was to have timezone-homogeneous teams
that were not spread over more than 4 hours of time zone difference, ideally
less. Meetings and synchronous communication, an essential part of the team
idea, seemed too hard to organize with more than three people spread over
America, Europe, and Asia. We thus focused on geographical diversity across,
but not within, teams. This lead us to reserve 15 spots (3 teams) for Central
European/African time zones, 10 spots (2 teams) for American time zones and
5 spots (1 team) for East European, Middle East and 5 spots (1 team) Eastern
Asian time zone. There were no applicants from other parts of the world. Al-
though this distribution is biased toward European/African time zones, to be ex-
pected with EU funding, this choice of numbers wasmostly imposed by the num-
ber of applications from each region, as by far most of them came from Europe.
Paradoxically it still gave a significantly higher chance to non-Europeans to par-
ticipate, although there were less overall slots for them. With “non-European”
here we strictly refer to place of living at the time of the program, and some of
those non-Europeans were Expat-Europeans. Therefore, although a range of
continents and cultures were represented, participation was by far not globally
representative, not even if restricted to highly industrialized nations.

Another shortcoming, as unfortunately so often in the tech world, was in failing
to achieve gender diversity. The only two (very strong) female applicants were
not enough to even consider forming somewhat gender-diverse teams.

All this meant that we were left with building teams that were diverse along
the axes of professional seniority and Nix experience. We did this in a way
which we called, for the lack of a better term, compartmentalized randomness:
building on a 3×3matrix of seniority and Nix skill a random queue of applicants.
The process was certainly not objective, just as basically any application pro-
cess, but we are convinced we were guided by reasonable principles. It meant
in the end that senior Nix experts did have the highest chance to participate,
simply because there were not as many of them, but it also gave a fair chance
to others.

We could have considered additional axes to build the teams, for example, by
grouping people who were interested in similar technology. But this seemed
to become too complicated under the other constraints and also premature be-
cause we did not go through the actual work yet in detail and had not thought
about how to actually distribute it among the teams. Perhaps, rather than
searching for ways to further optimize teams upfront, an additional mechanism
to adapt and improve them during the program would have been useful — but
also potentially dangerous if done maladroit.

7



2.5 Timeline, task distribution, events and start

Everything that has been described so far, from the first idea to the end of the
selection process, happened in a relatively short time period: It began with a
first mention of the idea in an email on January 22nd 2021. A direct follow-up,
one of the oldest of about 500 Summer of Nix related email threads (excluding
auto-generated notifications) from February 6th 2021, reads:

we could have 4 participants FT for 5 weeks including budget for
the mentors. This is probably the most challenging but also most
rewarding endeavor and would need to be organized quickly if it is
for this summer.

The NixOS discourse announcement post came out on March 21st 2021, and
we reached the end of the selection process on May 16th 2021 after more than
100 applications. There was not much of time for planning afterwards as well,
because after about one month of downtime, we had to start preparing work
and events for 35 developers and 8 mentors to avoid major confusion on August
2nd 2021, when the program was supposed to start.

As first preparatory measure, we started regular meetings with the mentors
to on-board them gradually to the program so that they would know what was
coming and had the means to already start influencing it. The first question to
answer for all of us was what we would be working on exactly and how work
would be distributed:

Thanks to prior work from the NLnet and NixOS Foundations, we already had
a written list of relatively independent work items, which essentially amounted
to the more than 200 NLnet projects to package, prepared as a long list of
GitHub issues. Certainly, some information was missing in those issues, there
were duplicates, and some of them were simply not tractable, but overall this
list was a treasure trove, and we would have had trouble to get ready in time
without it.

Initially we thought about going through the issue list upfront, tag and dis-
tribute it to the teams, e.g. grouped by technology. We quickly realized that
we would not have the time to do this before start of the program, and that the
list was too large to deal with sequentially. We therefore opted for a different
method which I will call assign-and-trade here: The full issue list was ran-
domly divided by the number of teams (seven), assigning every issue a team
label. Coincidentally the full list had precisely seven pages on GitHub which
means that splitting and labelling was easy to do. This distribution was def-
initely not optimal, but rather a random starting point: It meant that some
teams would have more difficult issues than others, some teams would be miss-
ing the required skills to tackle an assigned issue, or they simply would not
be interested in it. This is why we introduced a trading mechanism, such that
teams could report interest in an issue they liked, or put issues out for trade
which they did not want to work on.

As further preparation, we also wrote a step-by-step packaging workflow to set
some standards to get everyone started quickly:

As developer you look through the issues assigned to your team via filtering by
GitHub label. Once you find an interesting one, you assign yourself to it. An
issue corresponds roughly to an independent NLnet project. The first step af-
ter assignment is to find out what it is about exactly, and what could actually
be packaged. Once this is done, you start packaging by forking the original
repository to the NGI-Nix GitHub organization, adding the Nix build instruc-
tions directly to it. Once ready, there are several paths to continue: a PR to the

8

https://github.com/ngi-nix


original source repository (that is why we initially thought that forking was a
good idea), a PR to nixpkgs, Nix’s official package repository, or simply leaving
it as independent build instructions on the ngi-nix organization in an indepen-
dent repository.

Participants would work through this workflow alone, and ask their mentor or
other team members for help and support.

A question that came up was when those build instructions were considered
done. As with most software work, one can deliver more or less complete and
high quality solutions depending on the goals. We worried a little about qual-
ity in general, because often developers are satisfied if something works for
themselves, but not necessarily for somebody else. Although Nix gives certain
guarantees about reproducibility, it cannot guarantee that something is com-
plete and documented enough so that it is usable. To drive quality up on the
finish line of packaging, we decided to ask the 8th mentor to explicitly focus on
this, to test the packages, give feedback and try to raise the bar. We hoped that
this would allow the other mentors to concentrate on working with their team
in a supporting role as much as possible, without having to switch too much
into an adversarial position themselves.

With the issue assignment strategy and the basic workflow, we felt ready to
get started, but we were also scared to actually do so. Having 43 participants
and mentors all starting out at once without any test seemed audacious. The
fear was not that our upfront preparation and game plan wouldn’t work out
perfectly. It was always thoughtmore as a guideline for self-thinking individuals.
With the little time that we had to organize the program we did not hope to
get anywhere close to perfection. But we feared to have missed something
major that would block and demotivate the brightest participants right from the
beginning. Fortunately, two participants and their team mentor were willing to
get started already in July 2021, one month before the actual start date on
August 2nd, to try what we had prepared. They began to package the first
repositories, started to flag problems, and got used to the program.

Another aspect not mentioned so far was our plan to organize a presentation
schedule for Summer of Nix — inviting core members of the community to talk
about what they know best: their own work. Due to time constraints we were
not able to organize this much in advance, and decided to go for a more in-
teractive and flexible approach. We thus only had prepared up front a kick-off
meeting on Monday, 2nd August 2021, and the first technical presentation by
the inventor of Nix, Eelco Dolstra, and later added others on the way through
the program.

2.6 Tooling

During the preparation phase, we had tomake decisions concerning which tools
we should use to organize this event. Simplicity over fanciness was our ma-
jor guideline here. In addition, we tried to use FOSS tools, because it cor-
responded to the overall spirit of the program, and because they were often
quicker and easier to use, as no further budget and sign-ups were required. We
also decided to be pragmatic and use commercial tools whenever they were
providing us with a clearly simpler and more robust solution.

Some of the FOSS tools we used (none of them self-hosted) were:

• Cryptpad for collaborative text documents and sheets. Cryptpad was
quite feature complete and a good choice for collaborative writing and

9



sheet calculations for organization. In our case, it competed with Google
Docs, which was probably better known by many and directly integrated
with Google Drive. The latter fact was definitely an advantage for us,
which is why we did not fully move to Cryptpad.

• BigBlueButton for webinar-style presentations. We used an instance
hosted by the TUDelft for this event to great effect. Other hosted instances
were difficult to find. Especially the shared-notes and recording features
of BigBlueButton were helpful to make the presentations interactive.

• Jitsi for face-to-face video conferencing worked very well. The fact that
there was no requirement sign up anywhere was a big plus, especially to
organize the hiring event later on.

• Matrix for synchronous chat also worked well. The user experience of its
main client Element (formerly Riot) was sometimes not as polished as in
tools like Discord or Slack, but in general it did what it was supposed to
do. The “Space” feature of Matrix, basically a set of channels, was very
convenient to integrate open community channels with our private event
channels. We had a very simple setup with two general chat rooms, a
single private one for each team, and in addition an admin and mentor
channel.

Coincidentally, all of these open source tools had received NLnet funding, and
we worked on improving packaging for them during the program. Some of the
commercial tools we used in addition were:

• Hellosign for signatures
• GitHub for the issue list, program documentation, discussion board, and
source code

• Google Drive and Google Docs to store administrative documents

During the project, we also worked on FOSS alternatives to these, so that in
principle we could have run the full program on FOSS. However, as mentioned
earlier, we had limited resources to set this up, and needed to carefully budget
what to spend our time on. In addition to these tools, we mainly used email for
administrative purposes, for example to send out .ics calendar invitations and
other cases where we could have used an external tool. This was advantageous
in a way, as everyone knows email, and because it was possible to automate it
to some degree — but given the size of the project more structured approaches
could have helped.

2.7 The program runs

The strange thing about bigger projects from the perspective of the organizer
is that the start does not really feel like the start, because so much of the work
has already happened. And as soon as the project starts, it feels like a boulder
rolling down the hill, hard to influence where it will end up. It paid out to have
clear, built-in and scalable day-to-day mechanisms for feedback, guidance, and
decision-making, via the mentors who were admittedly dropped into a situation
with significant responsibility, little time for preparation, and tight time budget,
officially being only available one day per week for coordination. The mentors
handled the major part of the organizational work load from day to day; guiding,
organizing and resolving as much as possible directly with their teams. The
bottlenecks that we did encounter were the decisions that could not be made by
thementors, or where it was not clear if they had the authority to make them. In
this case, questions were handed upwards, mostly to NLnet for whom this was
a significant amount of work to stay on track. During the program we had little
problems with bad decisions, but with bottlenecks and a lack of responsiveness

10



when decisions went upwards, which was sometimes frustrating and a sign
that local decision making could have been even better, and surely something
to improve on.

In this decentralized situation no one had an oversight of the whole program.
Work was distributed and trust-based, and everyone only had their own limited
perspective. Participants knew most about the packages they were working on,
mentors had a larger vision of their team activities and also the issue list, or-
ganizers were busy organizing, and NLnet and others busy resolving questions.
We did not have effective and fast reporting mechanisms in place. Our global
issue list captured only a small part of what was going on. In addition, partic-
ipants filled out time sheets with weekly granularity but we did not have the
time to read those until after the event. Weekly granularity turned out to be an
excellent choice though because we were at least able to read all of them later.
Other than that, organizers and mentors exchanged informally on progress in
weekly meetings and via Matrix.

During the program, participants were mostly working on packages, learning,
and talking to each other autonomously. Organized events set a certain rhythm
for the participants throughout the week: typically a team meeting (although
this was left to each team to decide), and about every second week on Wednes-
day at least one centrally organized presentation, in two editions to cover all
time zones. These presentations were given by invited speakers, some of them
program participants themselves, about in-depth but basic Nix topics rather
than about the newest developments.12 We also had a time slot on Tuesdays
for participant presentations, which was used occasionally. More happened be-
hind the scenes, proposed by various participants, and in the different teams.
Later in the programwe sent out a list, randomly assigning one or two meetings
with someone from another team every week to foster cross-team communica-
tion.

The program ran in this manner more or less autonomously. I, as main project
organizer, was even able to hand over coordination for two weeks to go on a
vacation after a very intense half-year. The program went on without notable
accidents, although of course smaller problems came up. As was to be expected,
many things could be improved even under the same program constraints if we
were to repeat this program. But some of what exactly could be improved only
became clear after the event, when we asked for detailed feedback. This is
covered in the Feedback section of this report.

2.8 The hiring event

Before the program started, another idea materialized that seemed very valu-
able to pursue, even at the expense of having less time for organization of the
main program:

As consultants at Tweag we often talk to companies using and adopting Nix.
Similar to other emerging technologies, Nix is often a blessing and curse at the
same time for them. As an emerging technology, it solves previously unsolved
problems, but it also does not comewith a vibrant jobmarket. Immediately after
the interview phase, we concluded that companies may have great interest in
meeting the candidates who applied for Summer of Nix, and that the same may
be true for many applicants who often considered Nix not as something they
could find a job with. The idea to connect Summer of Nix applicants (even

12Subjects included Nix Flakes, Nix modules, the Nix RFC process, the nixpkgs release cycle,
poetry2nix, dream2nix, EU Open Source politics.

11



those who did not get seats on the final program) with companies adopting Nix
felt natural, but it meant further organization at a moment when we had little
capacity.

Still, we took the decision that this was worth pursuing, simply because it felt
like a hiring event would complete the Summer of Nix: It provided a great point
of motivation and direction, and made it clear that, from the junior participant
perspective, Summer of Nix would be about giving talented community mem-
bers an opportunity and guidance to make the jump into professional life, and
to gain experience in delivering paid work in a protected environment. From
the senior participant and mentor perspectives it was a moment to make use
of their knowledge, teach, and finally connect with companies who might be
interested in working with them professionally. However, the decision to add a
hiring event to Summer of Nix came at the cost that there was even less time to
spend on the main program, requiring to fully rely on and trust that our team
structure would work successfully. To lighten it up as much as we could, we
reduced the hiring event to the absolute essentials — a no-fuzz moment of con-
necting one side with the other in the most efficient and direct way. This was
born out of necessity, but it probably became a feature, because such an event
saved precious time for the participating companies and candidates.

We thus compiled a list of more than 60 companies which, as we got from dif-
ferent sources, had been using Nix. Many of them were small to medium enter-
prises, but some are also very large, and we reached out to them. Of those 60
companies, 13 agreed to actively participate in the hiring event.

With these companies, spread mostly over North America and Europe, and par-
ticipants across the globe, another challenge were time zones. We tried to
duplicate every event within Summer of Nix to cover all time zones, but for
this hiring event, we decided to go for a unique time slot from 17:00 to 20:00
(UTC+2). There is no single slot available that covers West-Coast US to the
Japanese time zone, and this one was picked at the expense of Japan, for whom
the event unfortunately was very late in the evening.

The hiring event was structured in two big sections: First every company would
give a short lightning presentation about themselves, then company represen-
tatives would go into on breakout rooms each, their virtual booth, and partici-
pants would move through these booths to have direct conversations with them.
To make this an interesting event for everyone, we had to make sure that booth
audience was evenly spread, so that no company was alone or flooded with the
majority of participants at once. That is why we decided to build a schedule for
the booth meetings, leaving breaks for flexibility. While the total duration of the
event was constrained by time zones, an open variable was the length of the
booth meetings. Longer but fewer time slots would mean more participants
per meeting, whereas shorter but more time slots could mean a one-on-one
interview for everyone. The latter was not possible given the amount of compa-
nies and candidates we had, and we thus decided against one-on-one meetings,
quite happily so because we did not want to create an interview situation, but
rather an active and open conversation. But we also wanted to avoid a webinar-
style one-directional situation with too many participants at the same time in
one booth. We therefore considered optimal between 2 and 5 participants per
booth per slot. It turned out that with this setup, the total number of partic-
ipants in the hiring event, and its total duration, slots needed to be about 15
minutes long, which appeared quick but sufficient to make a first connection.

To build the schedule, we first asked participants and companies for their pref-
erences. The rest then meant filling up a matrix of meeting slots × participants
× companies, considering time zones, participant and company preferences at

12



the same time.13 With helper scripts and much manual arrangement, we came
up with schedules.

In terms of tooling, after some consideration, we decided against any com-
mercial solution and ran it entirely with the open video conferencing solutions
BigBlueButton for the lightning presentations, and Jitsi for the booth breakout
rooms.

The event itself was quite a success, and seems to have run smoothly. See the
Feedback section for details.

3 Contributions

During the program I and others knew that everyone was doing something. We
got a glimpse of each other’s work through daily meetings, chats, and other
means of communication. However, a larger perspective of what we have
achieved as a group was very difficult to see until after the program. This
section tries to provide some insight into this.

3.1 Code contributions — summary statistics

It would be convenient to simply go through our issue list and check what had
been closed, and take that as the program output. For several reasons it was
not that easy:

Although the granularity of our issue list was quite homogeneous, one issue cor-
responded roughly to one NLnet package, there were exceptions such as issues
for larger subcomponents or dependencies, and also different interpretations
of what “closed” meant. A “90% done” open issue might represent more mean-
ingful work than another closed one, and a finished package with dependencies
might stand for one big or multiple smaller closed issues. We also had a “ready-
for-review” label as an additional issue state, but since our review team was
probably under-staffed, we did not manage to bring all of them all the way to
“closed.” Still, considering these limitations, the issue list activity is an impor-
tant indicator for Summer of Nix work. Fig. 1 shows this activity, the number
of created and closed issues, as a function of time, as well as the number of
issues flagged as “ready-for-review” that we ended up with.

Most issues were created (orange line) automatically in two big chunks,
mid-2020, a year before starting Summer of Nix, when the original packaging
project with independent developers working as contractors started. The
issues were created from an internal project database that NLnet maintains
of each of the projects they support with grants. The number of issues grew
further during the program, because some of these auto-generated issues were
broken up into sub-issues, and some projects were added directly by NLnet.

Issues were closed (blue line) for a variety of reasons, primarily because the
work had been done, but also for a number of other reasons. For example,
some issues were duplicates, others referred to hardware-only projects with-
out anything to package, and others were intractable. Issues that remained
in “ready-for-review” state (green marker) at the end of the program are also
shown. In absolute numbers, we have started with about 230 open issues, of
which ca. 10 were already closed by prior packaging efforts. We ended up

13It would be absolutely great to write an online or command line tool for this.

13



Figure 1: Number of newly created and closed issues in our central issue list
as a function of time.

with a total number of 276 issues, of which 101 were closed, and 27 flagged as
“ready-for-review.”

As discussed above, the number of issues alone does not give a precise image
of the work involved, as their size and difficulty varied drastically, even if they
were valid packaging requests. Some required simply bumping a version on
nixpkgs when the associated project had already been packaged there. Others
involved profound work, for example bootstrapping, mobile NixOS, work on
tooling to tackle insufficiently supported language ecosystems, but also simply
small but difficult-to-package programs, and others with many unpackaged de-
pendencies that also had to be delivered. Work on such issues could easily have
taken the time of a single packager over the whole program’s time frame and
more.

An interesting number, although equally treacherous, is the number of issues
closed or flagged as “ready-for-review” on average per participant. It was ca.
3.4, and above our expected rate of 3. Again, this number is really only a gross
approximation of work, and it does not capture any of the additional non-NGI
packages, bug fixes, improved documentation, tooling, and other contributions
that came out of it. It also does not account for the quality of the contribu-
tions.

Another, similarly limited but still interesting, perspective of the code-
contributions done during Summer of Nix is the number of repositories under
the ngi-nix GitHub organization. Every tool to be reproducibly packaged went
under its own repository, although there were exceptions such as upstream
nixpkgs contributions. The number of repositories went up drastically once the
program started, as shown in fig. 2, and many new ones were created over
the course of the program. At the time of writing there are in total about 180
repositories, many public but also some private, in the ngi-nix organization
on GitHub, holding FOSS reproducibly packaged to varying degree. Not all of
this work had been finished, and some was adjacent work and not directly an
NGI package, which is why this number is higher than the number of issues
closed or flagged for review.

Besides GitHub, another source of information are the time sheets that pro-
gram participants had filled out during the program. We asked participants to

14



Figure 2: Number of repositories in the ngi-nix GitHub organization as a func-
tion of time.

Figure 3: Number of contributions for different upstream channels.

15



list their contributions there. Although it was tedious, we gathered every re-
ported contribution, an impressive number of 199 repositories, upstream pull
requests, or relevant issues to various channels, in structured form from these
time sheets. The full list is in the next subsection, sec. 3.2.

Fig. 3 summarizes where those contributions went: most are repositories on
ngi-nix. A lot of contributions, NGI packages, their dependencies, bug fixes or
improvements to documentation went directly to nixpkgs, Nix’ official software
library. And finally others were added to the wider Nix ecosystem or directly to
upstream repositories.

Most contributions to the Nix community, outside of nixpkgs, were bug fixes
on the so-called lang2nix14 helper tools to reproducibly package software from
various programming language ecosystems. But also new tools were initiated,
like dream2nix or static analyzer. Contributions to documentation in hope to
simplify future packaging efforts were made, and two RFCs were written with
suggestions to evolve the Nix ecosystem.

3.2 Contribution list

3.2.1 Namecoin package

https://www.namecoin.org/

Namecoin is a key/value pair registration and transfer system based on the
Bitcoin technology. Bitcoin frees money – Namecoin frees DNS, identities, and
other technologies.

• https://github.com/ngi-nix/namecoin-core/pull/1/files

3.2.2 Kazarma

https://gitlab.com/kazarma/kazarma/

A bridge between Matrix and Activity pub.

• https://github.com/ngi-nix/kazarma/pull/1

3.2.3 Lemmy

https://join-lemmy.org/

Lemmy is similar to sites like Reddit, Lobste.rs, or Hacker News. You subscribe
to communities you’re interested in, post links and discussions, then vote and
comment on them.

• https://github.com/ngi-nix/lemmy-ui/tree/flakes
• https://github.com/ngi-nix/lemmy/tree/flakes
• https://github.com/NixOS/nixpkgs/pull/137186
• https://github.com/NixOS/nixpkgs/pull/139174

14By lang2nix the Nix community refers to tools where lang is usually substituted with the pro-
gramming language or its native package manager, such as poetry2nix for Python and Poetry,
crate2nix for Rust and Cargo. These tools automatically convert package descriptions from an
ecosystem’s package manager to reproducible Nix package descriptions.

16

https://www.namecoin.org/
https://github.com/ngi-nix/namecoin-core/pull/1/files
https://gitlab.com/kazarma/kazarma/
https://github.com/ngi-nix/kazarma/pull/1
https://join-lemmy.org/
https://github.com/ngi-nix/lemmy-ui/tree/flakes
https://github.com/ngi-nix/lemmy/tree/flakes
https://github.com/NixOS/nixpkgs/pull/137186
https://github.com/NixOS/nixpkgs/pull/139174


3.2.4 PeerTube

https://joinpeertube.org/

Free software to take back control of your videos

• https://github.com/NixOS/nixpkgs/pull/119110#issuecomment-961536164
• https://github.com/Chocobozzz/PeerTube/issues/4393
• https://github.com/Chocobozzz/PeerTube/issues/4394

3.2.5 Hyperspace

https://www.hyperhyperspace.org/

Make all data local. Communicate only through data sync

• https://github.com/ngi-nix/hyperspace/pull/1
• https://github.com/hypercore-protocol/cli/issues/51

3.2.6 GnuNet

https://www.gnunet.org/en/index.html

A network protocol stack for building secure, distributed, and privacy-
preserving applications.

• https://github.com/NixOS/nixpkgs/pull/136365

3.2.7 Interpeer

https://interpeer.io/

A secure and efficient peer-to-peer networking stack that will empower a human
centric internet, circumventing the protocols of the past.

• https://github.com/ngi-nix/channeler
• https://github.com/ngi-nix/packeteer
• https://github.com/ngi-nix/liberate

3.2.8 KiwiIRC

https://kiwiirc.com/

Makes Web IRC easy. A hand-crafted IRC client that you can enjoy. Designed
to be used easily and freely.

• https://github.com/kiwiirc/kiwiirc/pull/1605

3.2.9 TCN

https://github.com/TCNCoalition/TCN

Specification and reference implementation of the TCN Protocol for decentral-
ized, privacy-preserving contact tracing.

• https://github.com/ngi-nix/TCN

17

https://joinpeertube.org/
https://github.com/NixOS/nixpkgs/pull/119110#issuecomment-961536164
https://github.com/Chocobozzz/PeerTube/issues/4393
https://github.com/Chocobozzz/PeerTube/issues/4394
https://www.hyperhyperspace.org/
https://github.com/ngi-nix/hyperspace/pull/1
https://github.com/hypercore-protocol/cli/issues/51
https://www.gnunet.org/en/index.html
https://github.com/NixOS/nixpkgs/pull/136365
https://interpeer.io/
https://github.com/ngi-nix/channeler
https://github.com/ngi-nix/packeteer
https://github.com/ngi-nix/liberate
https://kiwiirc.com/
https://github.com/kiwiirc/kiwiirc/pull/1605
https://github.com/TCNCoalition/TCN
https://github.com/ngi-nix/TCN


3.2.10 Corteza

https://github.com/cortezaproject/corteza-server

Corteza is the only 100% free, open-source, standardized and enterprise-grade
Low-code platform.

• https://github.com/cortezaproject/corteza-server/pull/253

3.2.11 Blink

https://icanblink.com/

A state of the art, easy to use SIP client, a protocol for real-time sessions such
as voice, video and messaging appls.

• https://github.com/ngi-nix/blink

3.2.12 Castopod

https://podlibre.org/tag/castopod-host/

An open-source server made for podcasters who want engage and interact with
their audience.

• https://github.com/ngi-nix/castopod-host

3.2.13 Jitsi ecosystem

https://jitsi.org/

Completely free video conferencing

• https://github.com/NixOS/nixpkgs/pull/137202
• https://github.com/NixOS/nixpkgs/pull/139948
• https://github.com/jitsi/jibri/issues/441

3.2.14 Liberaforms

https://liberaforms.org/en

Makes it easy to create and manage forms that respect the digital rights of the
people who use it.

• https://github.com/ngi-nix/liberaforms
• https://gitlab.com/liberaforms/liberaforms/-/issues/126
• https://gitlab.com/liberaforms/liberaforms/-/merge_requests/221

18

https://github.com/cortezaproject/corteza-server
https://github.com/cortezaproject/corteza-server/pull/253
https://icanblink.com/
https://github.com/ngi-nix/blink
https://podlibre.org/tag/castopod-host/
https://github.com/ngi-nix/castopod-host
https://jitsi.org/
https://github.com/NixOS/nixpkgs/pull/137202
https://github.com/NixOS/nixpkgs/pull/139948
https://github.com/jitsi/jibri/issues/441
https://liberaforms.org/en
https://github.com/ngi-nix/liberaforms
https://gitlab.com/liberaforms/liberaforms/-/issues/126
https://gitlab.com/liberaforms/liberaforms/-/merge_requests/221


3.2.15 Etesync

https://www.etesync.com/

Secure, end-to-end encrypted, and privacy respecting sync for your contacts,
calendars, tasks and notes.

• https://github.com/NixOS/nixpkgs/pull/133536
• https://github.com/ngi-nix/libetebase
• https://github.com/ngi-nix/etebase-rs
• https://github.com/ngi-nix/libetebase
• https://github.com/ngi-nix/etebase-java
• https://github.com/NixOS/nixpkgs/pull/134343

3.2.16 liboqs

https://openquantumsafe.org/

An open source C library for quantum-safe cryptographic algorithms

• https://github.com/ngi-nix/liboqs

3.2.17 Milagro

https://github.com/apache/incubator-milagro

A set of crypto libraries and core security infrastructure applications, built for
decentralized networks yet suitable for enterprises.

• https://github.com/ngi-nix/incubator-milagro

3.2.18 Software Heritage

https://www.softwareheritage.org/

•
• https://github.com/ngi-nix/swh-environment/pull/1

3.2.19 DiffPrivacyInference

https://github.com/DiffMu/DiffPrivacyInference.jl

A type checker which can automatically analyze Julia programs with respect to
differential privacy guarantees.

• https://github.com/ngi-nix/DiffPrivacyInference/

3.2.20 Kaidan

https://www.kaidan.im/

A user-friendly and modern chat app for every device. It uses the open commu-
nication protocol XMPP (Jabber).

• https://github.com/NixOS/nixpkgs/pull/136916

19

https://www.etesync.com/
https://github.com/NixOS/nixpkgs/pull/133536
https://github.com/ngi-nix/libetebase
https://github.com/ngi-nix/etebase-rs
https://github.com/ngi-nix/libetebase
https://github.com/ngi-nix/etebase-java
https://github.com/NixOS/nixpkgs/pull/134343
https://openquantumsafe.org/
https://github.com/ngi-nix/liboqs
https://github.com/apache/incubator-milagro
https://github.com/ngi-nix/incubator-milagro
https://www.softwareheritage.org/
https://github.com/ngi-nix/swh-environment/pull/1
https://github.com/DiffMu/DiffPrivacyInference.jl
https://github.com/ngi-nix/DiffPrivacyInference/
https://www.kaidan.im/
https://github.com/NixOS/nixpkgs/pull/136916


3.2.21 Weblate

https://weblate.org/en/

A web based translation tool, used by over 2,500 libre software projects and
companies in over 165 countries.

• https://github.com/ngi-nix/weblate
• https://github.com/WeblateOrg/weblate/issues/6679

3.2.22 LibreSOC

https://libre-soc.org/

With Libre-SOC, you can take complex algorithms usually intended for power
hungry servers with big fat GPUs, and run them on tiny devices like smart-
watches, cellphones, and pocket drones without changing your code at all.

• https://github.com/ngi-nix/libresoc-soc/pull/1
• https://git.libre-soc.org/?p=soc.git;a=commit;h=506c93ac12aa4d52db5ba

3.2.23 Coriolis

http://coriolis.lip6.fr/

A complete toolchain for vlsi design. It provides a vhdl compiler and simulator,
logic synthetiser, automatic place & route and portable cmos library.

• https://gitlab.lip6.fr/vlsi-eda/coriolis/-/merge_requests/8

3.2.24 Meta Press

https://www.meta-press.es/

Decentralized search engine & automatized press reviews

• https://github.com/ngi-nix/meta-press

3.2.25 OpenFoodFacts

https://world.openfoodfacts.org/

A food products database made by everyone, for everyone. You can use it to
make better food choices, and as it is open data, anyone can re-use it for any
purpose.

• https://github.com/ngi-nix/openfoodfacts-server/tree/ngi-nix

3.2.26 Nyxt

https://nyxt.atlas.engineer/

Power-browser that ships with tens of features that allow you to quickly analyze,
navigate, and extract information from the Internet.

• https://github.com/ngi-nix/nyxt

20

https://weblate.org/en/
https://github.com/ngi-nix/weblate
https://github.com/WeblateOrg/weblate/issues/6679
https://libre-soc.org/
https://github.com/ngi-nix/libresoc-soc/pull/1
https://git.libre-soc.org/?p=soc.git;a=commit;h=506c93ac12aa4d52db5ba22a10676bb1dfd200f0
http://coriolis.lip6.fr/
https://gitlab.lip6.fr/vlsi-eda/coriolis/-/merge_requests/8
https://www.meta-press.es/
https://github.com/ngi-nix/meta-press
https://world.openfoodfacts.org/
https://github.com/ngi-nix/openfoodfacts-server/tree/ngi-nix
https://nyxt.atlas.engineer/
https://github.com/ngi-nix/nyxt


3.2.27 ForgeFed

https://forgefed.peers.community/

An upcoming federation protocol for enabling interoperability between version
control services.

• https://github.com/ngi-nix/mcfi
• https://github.com/ngi-nix/forgefed

3.2.28 CVEHound

https://github.com/evdenis/cvehound

A tool for checking linux sources for known CVEs (Common Vulnerabilities and
Exposures).

• https://github.com/ngi-nix/cvehound/

3.2.29 trackingthetrackers

https://nlnet.nl/project/F-Droid-Trackers/

A free software, community app store on Android that has been working since
2010 to make all forms of tracking and advertising visible to users.

• https://github.com/ngi-nix/trackingthetrackers-apk-api
• https://github.com/ngi-nix/trackingthetrackers-scripts
• https://github.com/ngi-nix/trackingthetrackers-etl
• https://github.com/ngi-nix/trackingthetrackers-classifier
• https://github.com/ngi-nix/trackingthetrackers-extracted-features

3.2.30 movim

https://nlnet.nl/project/Movim-OMEMO/

A web platform that delivers social and IM features on top of the mature XMPP
standard (aka Jabber)

• https://github.com/ngi-nix/movim

3.2.31 url-frontier

https://github.com/crawler-commons/url-frontier

A web crawler-neutral API

• https://github.com/ngi-nix/url-frontier

3.2.32 Katzenpost

https://katzenpost.mixnetworks.org/

Mix network protocol libraries. What is a mix network? It is an anonymous
communications system.

• https://github.com/ngi-nix/katzenpost

21

https://forgefed.peers.community/
https://github.com/ngi-nix/mcfi
https://github.com/ngi-nix/forgefed
https://github.com/evdenis/cvehound
https://github.com/ngi-nix/cvehound/
https://nlnet.nl/project/F-Droid-Trackers/
https://github.com/ngi-nix/trackingthetrackers-apk-api
https://github.com/ngi-nix/trackingthetrackers-scripts
https://github.com/ngi-nix/trackingthetrackers-etl
https://github.com/ngi-nix/trackingthetrackers-classifier
https://github.com/ngi-nix/trackingthetrackers-extracted-features
https://nlnet.nl/project/Movim-OMEMO/
https://github.com/ngi-nix/movim
https://github.com/crawler-commons/url-frontier
https://github.com/ngi-nix/url-frontier
https://katzenpost.mixnetworks.org/
https://github.com/ngi-nix/katzenpost


3.2.33 Variation Graph

https://github.com/vgteam/vg

Tools for working with genome variation graphs

• https://github.com/ngi-nix/magic_rb-vg

3.2.34 Xemu for MEGA65 Phone

https://github.com/lgblgblgb/xemu

Emulations of mainly 8 bit machines, including the Commodore LCD, Com-
modore 65, and the MEGA65 as well.

• https://github.com/ngi-nix/xemu

3.2.35 rebuilderd

https://rebuilderd.com/

Independent verification of binary packages - reproducible builds

• https://github.com/ngi-nix/rebuilderd

3.2.36 ricochet

https://github.com/blueprint-freespeech/ricochet-refresh

Anonymous peer-to-peer instant messaging

• https://github.com/ngi-nix/ricochet

3.2.37 poliscoops

https://github.com/openstate/poliscoops

An interactive online platform that allows journalists and citizens to stay in-
formed, and keep up to date with the growing group of political parties and
politicians relevant to them.

• https://github.com/ngi-nix/poliscoops-flake

3.2.38 GoatCounter

https://www.goatcounter.com/

Easy web analytics. No tracking of personal data.

• https://github.com/ngi-nix/magic_rb-goatcounter

22

https://github.com/vgteam/vg
https://github.com/ngi-nix/magic_rb-vg
https://github.com/lgblgblgb/xemu
https://github.com/ngi-nix/xemu
https://rebuilderd.com/
https://github.com/ngi-nix/rebuilderd
https://github.com/blueprint-freespeech/ricochet-refresh
https://github.com/ngi-nix/ricochet
https://github.com/openstate/poliscoops
https://github.com/ngi-nix/poliscoops-flake
https://www.goatcounter.com/
https://github.com/ngi-nix/magic_rb-goatcounter


3.2.39 Simple Bandwidth Scanner (OnBaSca)

https://tpo.pages.torproject.net/network-health/sbws/README.html

Tor bandwidth scanner

• https://github.com/ngi-nix/sbws-flake

3.2.40 NetFilter

https://www.netfilter.org/

Provides packet filtering software for the Linux 2.4.x and later kernel series.
The netfilter project is commonly associated with iptables and its successor
nftables.

• https://github.com/NixOS/nixpkgs/pull/140994

3.2.41 Bitcoin Transactions

https://peersm.com/wallet

Javascript implementation of the Bitcoin protocol for any Bitcoin based coins,
on server and inside browsers

• https://github.com/ngi-nix/bitcoin-transactions

3.2.42 Anastasis

https://anastasis.lu/en/

A key recovery system that allows the user to securely deposit shares of a core
secret with an open set of escrow providers, to recover it if the secret is lost

• https://github.com/ngi-nix/anastasis
• https://github.com/ngi-nix/anastasis-gtk

3.2.43 GNU Taler

https://taler.net/en/

A payment system that makes privacy-friendly online transactions fast and
easy

• https://github.com/NixOS/nixpkgs/pull/140477

3.2.44 Arpa2

http://arpa2.net/

Tools to repopulate a decentralised global internet that offers security and pri-
vacy by design.

• https://github.com/ngi-nix/arpa2
• https://github.com/NixOS/nixpkgs/pull/134965
• https://github.com/NixOS/nixpkgs/pull/134332

23

https://tpo.pages.torproject.net/network-health/sbws/README.html
https://github.com/ngi-nix/sbws-flake
https://www.netfilter.org/
https://github.com/NixOS/nixpkgs/pull/140994
https://peersm.com/wallet
https://github.com/ngi-nix/bitcoin-transactions
https://anastasis.lu/en/
https://github.com/ngi-nix/anastasis
https://github.com/ngi-nix/anastasis-gtk
https://taler.net/en/
https://github.com/NixOS/nixpkgs/pull/140477
http://arpa2.net/
https://github.com/ngi-nix/arpa2
https://github.com/NixOS/nixpkgs/pull/134965
https://github.com/NixOS/nixpkgs/pull/134332


3.2.45 P2Pcollab

https://p2pcollab.net/

Protocols for peer-to-peer collaboration.

• https://github.com/ngi-nix/p2pcollab
• https://github.com/p2pcollab/ocaml-noise-socket/issues/4
• https://github.com/p2pcollab/ocaml-blip/pull/1
• https://github.com/p2pcollab/ocaml-urps/pull/2
• https://github.com/p2pcollab/ocaml-fsq/issues/2
• https://github.com/p2pcollab/ocaml-sunnyhash/pull/2
• https://github.com/ngi-nix/bloomf/tree/flake-only

3.2.46 CWE checker

https://github.com/fkie-cad/cwe_checker

A security checker written in Rust using Ghidra

• https://github.com/ngi-nix/cwe_checker/tree/flake-only
• https://github.com/fkie-cad/cwe_checker/pull/234

3.2.47 Manyverse

https://www.manyver.se/

A social network off the grid.

• https://github.com/ngi-nix/manyverse/tree/nix/napalm-mazurel-2

3.2.48 EEZ ecosystem

https://www.envox.eu/

The modular BB3 (Bench Box 3) test & measurement solution which in com-
bination with the cross-platform EEZ Studio offers an appealing open source
feature packed framework for automating everyday testing and development
tasks suitable for makers, hobbyists, students and professionals.

• https://github.com/ngi-nix/studio/tree/flake-only

3.2.49 DNSSEC

https://github.com/NLnetLabs/dnssec-ceremony-tools/

DNSSEC provides trust in the DNS by guaranteeing the authenticity and in-
tegrity of DNS responses.

• https://github.com/ngi-nix/dnssec-ceremony-tools/tree/flake

24

https://p2pcollab.net/
https://github.com/ngi-nix/p2pcollab
https://github.com/p2pcollab/ocaml-noise-socket/issues/4
https://github.com/p2pcollab/ocaml-blip/pull/1
https://github.com/p2pcollab/ocaml-urps/pull/2
https://github.com/p2pcollab/ocaml-fsq/issues/2
https://github.com/p2pcollab/ocaml-sunnyhash/pull/2
https://github.com/ngi-nix/bloomf/tree/flake-only
https://github.com/fkie-cad/cwe_checker
https://github.com/ngi-nix/cwe_checker/tree/flake-only
https://github.com/fkie-cad/cwe_checker/pull/234
https://www.manyver.se/
https://github.com/ngi-nix/manyverse/tree/nix/napalm-mazurel-2
https://www.envox.eu/
https://github.com/ngi-nix/studio/tree/flake-only
https://github.com/NLnetLabs/dnssec-ceremony-tools/
https://github.com/ngi-nix/dnssec-ceremony-tools/tree/flake


3.2.50 URLExtract

https://github.com/lipoja/URLExtract

URLExtract is python class for collecting (extracting) URLs from given text
based on locating TLD.

• https://github.com/NixOS/nixpkgs/pull/139814

3.2.51 Owncast

https://owncast.online/

A self-hosted live video and web chat server for use with existing popular broad-
casting software.

• https://github.com/ngi-nix/owncast/tree/cleanup
• https://github.com/ngi-nix/owncast-admin/tree/flake

3.2.52 BigBlueButton

https://bigbluebutton.org/

A global teaching platform. It was developed in a school, not in a boardroom.
Making it the only virtual classroom built from the ground up, just for teach-
ers.

• https://github.com/ngi-nix/bbb4nix/tree/flake

3.2.53 Briar

https://briarproject.org/

A secure messaging app designed for activists, journalists and civil society
groups. Instead of using a central server, encrypted messages are synchro-
nized directly between the users’ devices, protecting users and their relation-
ships from surveillance.

• https://github.com/ngi-nix/briar

3.2.54 elRepo.io

https://elrepo.io/

Resilient, human-centered, distributed content sharing and discovery.

• https://github.com/ngi-nix/elRepo.io

3.2.55 IMSI Pseudonymization

https://osmocom.org/

Open Source Mobile Communications

• https://github.com/ngi-nix/imsi-pseudo

25

https://github.com/lipoja/URLExtract
https://github.com/NixOS/nixpkgs/pull/139814
https://owncast.online/
https://github.com/ngi-nix/owncast/tree/cleanup
https://github.com/ngi-nix/owncast-admin/tree/flake
https://bigbluebutton.org/
https://github.com/ngi-nix/bbb4nix/tree/flake
https://briarproject.org/
https://github.com/ngi-nix/briar
https://elrepo.io/
https://github.com/ngi-nix/elRepo.io
https://osmocom.org/
https://github.com/ngi-nix/imsi-pseudo


3.2.56 Conversations

https://conversations.im/

An Android client for the federated, provider independent network of instant
messaging servers that use the Extensible messaging and Presence Protocol
(XMPP).

• https://github.com/ngi-nix/Conversations-1/tree/flake-only

3.2.57 Reowulft

https://reowolf.net/

Replace a decades-old application programming interface (BSD-style sockets)
for communication on the Internet. In this project, a novel programming in-
terface is implemented at the systems level that is interoperable with existing
Internet applications.

• https://github.com/ngi-nix/reowolf

3.2.58 Mailpile

https://www.mailpile.is/

Mailpile is an e-mail client! Mailpile is a search engine and a personal webmail
server. Mailpile is an easy way to encrypt your e-mail. Mailpile is software you
run yourself, on your own computer.

• https://github.com/NixOS/nixpkgs/pull/135543

3.2.59 mobile-nixos

https://github.com/NixOS/mobile-nixos

Mobile NixOS is a superset on top of NixOS Linux, Nixpkgs and Nix, aiming to
abstract away the differences between mobile devices. In four words “NixOS,
on your phone.”

• https://github.com/NixOS/mobile-nixos/pull/404

3.2.60 OSX-KVM

https://github.com/foxlet/macOS-Simple-KVM

Tools to set up a quick macOS VM in QEMU, accelerated by KVM.

• https://github.com/ngi-nix/OSX-KVM

3.2.61 Waasabi

https://waasabi.org/

Open source framework for custom live streaming events and conferences.

• https://github.com/ngi-nix/waasabi

26

https://conversations.im/
https://github.com/ngi-nix/Conversations-1/tree/flake-only
https://reowolf.net/
https://github.com/ngi-nix/reowolf
https://www.mailpile.is/
https://github.com/NixOS/nixpkgs/pull/135543
https://github.com/NixOS/mobile-nixos
https://github.com/NixOS/mobile-nixos/pull/404
https://github.com/foxlet/macOS-Simple-KVM
https://github.com/ngi-nix/OSX-KVM
https://waasabi.org/
https://github.com/ngi-nix/waasabi


3.2.62 Wireguard

https://www.wireguard.com/

An extremely simple yet fast and modern VPN that utilizes state-of-the-art cryp-
tography. It aims to be faster, simpler, leaner, and more useful than IPsec,
while avoiding the massive headache.

• https://github.com/NixOS/nixpkgs/pull/133763

3.2.63 SearX

https://searx.me/

Privacy-respecting metasearch engine

• https://github.com/ngi-nix/searx-thegreenopenweb
• https://github.com/ngi-nix/tgwf-searx-plugins/tree/nix-flake

3.2.64 PCB-rnd

http://repo.hu/projects/pcb-rnd/

Is a free/open source, flexible, modular Printed Circuit Board editor.

• https://github.com/ngi-nix/pcb-rnd/pull/2

3.2.65 Noise Explorer

https://noiseexplorer.com/

An online engine for reasoning about Noise Protocol Framework (revision 34)
Handshake Patterns.

• https://github.com/ngi-nix/noiseExplorer

3.2.66 Universal Resolver

https://danubetech.com/

Resolve any DID on any blockchain, DLT, or other decentralized network.

• https://github.com/ngi-nix/universal-resolver

3.2.67 IRMA

https://irma.app/

Everyone can freely download the IRMA app (Android and iOS and F-droid) and
fill it with their own data. For instance, store your email address and possibly
mobile number as attribute in your IRMA app.

• https://github.com/ngi-nix/irmago-server
• https://github.com/ngi-nix/IRMAseal

27

https://www.wireguard.com/
https://github.com/NixOS/nixpkgs/pull/133763
https://searx.me/
https://github.com/ngi-nix/searx-thegreenopenweb
https://github.com/ngi-nix/tgwf-searx-plugins/tree/nix-flake
http://repo.hu/projects/pcb-rnd/
https://github.com/ngi-nix/pcb-rnd/pull/2
https://noiseexplorer.com/
https://github.com/ngi-nix/noiseExplorer
https://danubetech.com/
https://github.com/ngi-nix/universal-resolver
https://irma.app/
https://github.com/ngi-nix/irmago-server
https://github.com/ngi-nix/IRMAseal


3.2.68 Delta Chat

https://delta.chat/en/

Delta Chat is like Telegram or Whatsapp but without the tracking or central
control. Delta Chat does not need your phone number. Check out our privacy
statement.

• https://github.com/ngi-nix/deltabot

3.2.69 IPFS and IPFS Search

https://ipfs-search.com/#/

A Free and Open Source (FOSS) search engine for directories, documents,
videos, music on the Interplanetary Filesystem (IPFS)

• https://github.com/ngi-nix/ipfs-search
• https://github.com/NixOS/nixpkgs/pull/135850
• https://github.com/NixOS/nixpkgs/pull/135867
• https://github.com/NixOS/nixpkgs/pull/136137
• https://github.com/NixOS/nixpkgs/pull/136143
• https://github.com/NixOS/nixpkgs/pull/136170
• https://github.com/NixOS/nixpkgs/pull/136255
• https://github.com/NixOS/nixpkgs/pull/136261
• https://github.com/NixOS/nixpkgs/pull/137070

3.2.70 Meilisearch

https://www.meilisearch.com/

Powerful, fast, and an easy to use search engine

• https://github.com/NixOS/nixpkgs/pull/136353
• https://github.com/NixOS/nixpkgs/pull/137612
• https://github.com/NixOS/nixpkgs/pull/137078
• https://github.com/NixOS/nixpkgs/pull/138778

3.2.71 Cryptpad

https://cryptpad.fr/

End-to-end encrypted and open-source collaborative documents.

• https://github.com/NixOS/nixpkgs/pull/133202
• https://github.com/NixOS/nixpkgs/issues/128154

3.2.72 Sonar

https://arso.xyz/

We’re developing tools to make it easy to share media collaboratively without
relying on centralized services.

• https://github.com/ngi-nix/sonar-1
• https://github.com/ngi-nix/sonar-tantivy/pull/1

28

https://delta.chat/en/
https://github.com/ngi-nix/deltabot
https://ipfs-search.com/#/
https://github.com/ngi-nix/ipfs-search
https://github.com/NixOS/nixpkgs/pull/135850
https://github.com/NixOS/nixpkgs/pull/135867
https://github.com/NixOS/nixpkgs/pull/136137
https://github.com/NixOS/nixpkgs/pull/136143
https://github.com/NixOS/nixpkgs/pull/136170
https://github.com/NixOS/nixpkgs/pull/136255
https://github.com/NixOS/nixpkgs/pull/136261
https://github.com/NixOS/nixpkgs/pull/137070
https://www.meilisearch.com/
https://github.com/NixOS/nixpkgs/pull/136353
https://github.com/NixOS/nixpkgs/pull/137612
https://github.com/NixOS/nixpkgs/pull/137078
https://github.com/NixOS/nixpkgs/pull/138778
https://cryptpad.fr/
https://github.com/NixOS/nixpkgs/pull/133202
https://github.com/NixOS/nixpkgs/issues/128154
https://arso.xyz/
https://github.com/ngi-nix/sonar-1
https://github.com/ngi-nix/sonar-tantivy/pull/1


3.2.73 Webshell

https://wiki.ljudmila.org/WebShell

A free, open-source, private and secure alternative to commercial cloud storage
and web-based software. It’s a web desktop which can be self-hosted on your
server to provide access to your files and apps from the web.

• https://github.com/ngi-nix/webshell

3.2.74 Misskey

https://join.misskey.page/en-US/

A decentralized and open source microblogging platform

• https://github.com/ngi-nix/misskey/tree/flake

3.2.75 EgilSCIM

https://github.com/Sambruk/EgilSCIM

The EGIL SCIM client implements the EGIL profile of the SS 12000 standard.
It reads information about students, groups etc. from LDAP and sends updates
to a SCIM server.

• https://github.com/Sambruk/EgilSCIM/pull/118
• https://github.com/Sambruk/EgilSCIM/pull/121
• https://github.com/Sambruk/EgilSCIM/pull/122
• https://github.com/Sambruk/EgilSCIM/pull/123
• https://github.com/ngi-nix/EgilSCIM/tree/flake-only

3.2.76 Other flakes on the ngi organization

Mostly dependencies of NGI projects

• https://github.com/ngi-nix/pymilter
• https://github.com/ngi-nix/pgp-milter
• https://github.com/ngi-nix/libspng
• https://github.com/ngi-nix/tika

3.2.77 2nix tooling

Contributions to various 2nix tools.

• https://github.com/svanderburg/composer2nix/pull/24
• https://github.com/svanderburg/composer2nix/issues/21#issuecomment-
93

• https://github.com/nix-community/napalm/pull/35
• https://github.com/svanderburg/node2nix/pull/261
• https://github.com/nix-community/npmlock2nix/pull/93
• https://github.com/nix-community/npmlock2nix/pull/94
• https://github.com/nix-community/npmlock2nix/pull/108,
• https://github.com/nix-community/npmlock2nix/pull/110,
• https://github.com/nix-community/npmlock2nix/pull/111,

29

https://wiki.ljudmila.org/WebShell
https://github.com/ngi-nix/webshell
https://join.misskey.page/en-US/
https://github.com/ngi-nix/misskey/tree/flake
https://github.com/Sambruk/EgilSCIM
https://github.com/Sambruk/EgilSCIM/pull/118
https://github.com/Sambruk/EgilSCIM/pull/121
https://github.com/Sambruk/EgilSCIM/pull/122
https://github.com/Sambruk/EgilSCIM/pull/123
https://github.com/ngi-nix/EgilSCIM/tree/flake-only
https://github.com/ngi-nix/pymilter
https://github.com/ngi-nix/pgp-milter
https://github.com/ngi-nix/libspng
https://github.com/ngi-nix/tika
https://github.com/svanderburg/composer2nix/pull/24
https://github.com/svanderburg/composer2nix/issues/21#issuecomment-939113960
https://github.com/svanderburg/composer2nix/issues/21#issuecomment-939113960
https://github.com/nix-community/napalm/pull/35
https://github.com/svanderburg/node2nix/pull/261
https://github.com/nix-community/npmlock2nix/pull/93
https://github.com/nix-community/npmlock2nix/pull/94
https://github.com/nix-community/npmlock2nix/pull/108,
https://github.com/nix-community/npmlock2nix/pull/110,
https://github.com/nix-community/npmlock2nix/pull/111,


• https://github.com/nix-community/npmlock2nix/pull/115
• https://github.com/nix-community/poetry2nix/pull/368
• https://github.com/fzakaria/mvn2nix/issues/40
• https://github.com/nix-community/naersk/issues/187
• https://github.com/nix-community/naersk/issues/188
• https://github.com/rvl/bower2nix/pull/21
• https://github.com/nix-community/dream2nix

3.2.78 Flake templates

Nix flake templates

• https://github.com/ngi-nix/flakes-templates/pull/1
• https://github.com/NixOS/templates/pull/7
• https://github.com/ngi-nix/nixos-modules-flake-template/blob/main/fla

3.2.79 Other nixpkgs contributions

https://github.com/NixOS/nixpkgs

Docs, broken, version bumps, adding dependencies

• https://github.com/NixOS/nixpkgs/pull/126758
• https://github.com/NixOS/nixpkgs/pull/127724
• https://github.com/NixOS/nixpkgs/pull/130419
• https://github.com/NixOS/nixpkgs/pull/132287#pullrequestreview-
736233

• https://github.com/NixOS/nixpkgs/pull/132906
• https://github.com/NixOS/nixpkgs/pull/133354
• https://github.com/NixOS/nixpkgs/pull/133593
• https://github.com/NixOS/nixpkgs/pull/136274
• https://github.com/NixOS/nixpkgs/pull/133753
• https://github.com/NixOS/nixpkgs/pull/134110
• https://github.com/NixOS/nixpkgs/pull/134384
• https://github.com/NixOS/nixpkgs/pull/134657
• https://github.com/NixOS/nixpkgs/pull/135573
• https://github.com/NixOS/nixpkgs/pull/135730#pullrequestreview-
739660

• https://github.com/NixOS/nixpkgs/pull/136476
• https://github.com/NixOS/nixpkgs/pull/136524
• https://github.com/NixOS/nixpkgs/pull/136632
• https://github.com/NixOS/nixpkgs/pull/136637
• https://github.com/NixOS/nixpkgs/pull/136703
• https://github.com/NixOS/nixpkgs/pull/138016
• https://github.com/NixOS/nixpkgs/pull/138587
• https://github.com/NixOS/nixpkgs/pull/138591
• https://github.com/NixOS/nixpkgs/pull/138707
• https://github.com/NixOS/nixpkgs/pull/138750
• https://github.com/NixOS/nixpkgs/pull/140208
• https://github.com/NixOS/nixpkgs/pull/141822
• https://github.com/NixOS/nixpkgs/pull/142393
• https://github.com/NixOS/nixpkgs/pull/144547
• https://github.com/NixOS/nixpkgs/pull/144314

30

https://github.com/nix-community/npmlock2nix/pull/115
https://github.com/nix-community/poetry2nix/pull/368
https://github.com/fzakaria/mvn2nix/issues/40
https://github.com/nix-community/naersk/issues/187
https://github.com/nix-community/naersk/issues/188
https://github.com/rvl/bower2nix/pull/21
https://github.com/nix-community/dream2nix
https://github.com/ngi-nix/flakes-templates/pull/1
https://github.com/NixOS/templates/pull/7
https://github.com/ngi-nix/nixos-modules-flake-template/blob/main/flake.nix
https://github.com/NixOS/nixpkgs
https://github.com/NixOS/nixpkgs/pull/126758
https://github.com/NixOS/nixpkgs/pull/127724
https://github.com/NixOS/nixpkgs/pull/130419
https://github.com/NixOS/nixpkgs/pull/132287#pullrequestreview-736233478%20https://github.com/NixOS/nixpkgs/pull/132739
https://github.com/NixOS/nixpkgs/pull/132287#pullrequestreview-736233478%20https://github.com/NixOS/nixpkgs/pull/132739
https://github.com/NixOS/nixpkgs/pull/132906
https://github.com/NixOS/nixpkgs/pull/133354
https://github.com/NixOS/nixpkgs/pull/133593
https://github.com/NixOS/nixpkgs/pull/136274
https://github.com/NixOS/nixpkgs/pull/133753
https://github.com/NixOS/nixpkgs/pull/134110
https://github.com/NixOS/nixpkgs/pull/134384
https://github.com/NixOS/nixpkgs/pull/134657
https://github.com/NixOS/nixpkgs/pull/135573
https://github.com/NixOS/nixpkgs/pull/135730#pullrequestreview-739660033
https://github.com/NixOS/nixpkgs/pull/135730#pullrequestreview-739660033
https://github.com/NixOS/nixpkgs/pull/136476
https://github.com/NixOS/nixpkgs/pull/136524
https://github.com/NixOS/nixpkgs/pull/136632
https://github.com/NixOS/nixpkgs/pull/136637
https://github.com/NixOS/nixpkgs/pull/136703
https://github.com/NixOS/nixpkgs/pull/138016
https://github.com/NixOS/nixpkgs/pull/138587
https://github.com/NixOS/nixpkgs/pull/138591
https://github.com/NixOS/nixpkgs/pull/138707
https://github.com/NixOS/nixpkgs/pull/138750
https://github.com/NixOS/nixpkgs/pull/140208
https://github.com/NixOS/nixpkgs/pull/141822
https://github.com/NixOS/nixpkgs/pull/142393
https://github.com/NixOS/nixpkgs/pull/144547
https://github.com/NixOS/nixpkgs/pull/144314


3.2.80 Other Nix contributions

•
• https://github.com/NixOS/nix/pull/5364
• https://github.com/NixOS/nixos-search/pull/360
• https://github.com/nprindle/nix-parsec/pull/4
• https://github.com/NixOS/rfcs/pull/99
• https://github.com/NixOS/rfcs/pull/100
• https://github.com/nix-community/home-manager/issues/2251
• https://github.com/seppeljordan/nix-prefetch-github/issues/40
• https://github.com/NixOS/nix/issues/5169
• https://github.com/NixOS/nix/pull/5286
• https://github.com/NixOS/nix/pull/5163#issuecomment-924488262
• https://github.com/Mic92/nixos-shell/pull/41

3.2.81 Other

Other upstream contributions

• https://github.com/bytefury/crater/issues/578
• https://github.com/bytefury/crater/pull/579
• https://github.com/YosysHQ/prjtrellis/pull/178
• https://github.com/unbit/uwsgi-docs/pull/499
• https://github.com/celery/celery/pull/6988
• https://github.com/electron/electron/issues/31121
• https://github.com/Mazurel/android2nix

3.3 Non-code contributions

In addition to just participating, one participant ran aNix campwhere one could
hack on-site together. Another wrote a blog post for the Summer of Nix website.
Yet another participant helped to record all video sessions, which turned out
to be great learning material, although unfortunately not intended for public
use.

3.4 Outcome for the participants

If it is hard to evaluate the code-contributions of the program, it is even more
difficult to say what the outcome was for individual participants. Some greatly
enjoyed the program, became first-time maintainers on nixpkgs. Others got
hired either by the teams of the software that they packaged during Summer of
Nix, or through the hiring event. Some did not enjoy it as much and probably
did not take out a lot. We do not have exact numbers, not even a vague idea.

Directly from the time sheets, we could see that in total four participant
dropped out — two of them before the program started. Not everyone finished
the program fully, either. The participant contract was designed to deliver 320
hours in two chunks of 160 hours. Almost everyone delivered the full chunk
of the first half, but 5 participants finished the second part only partially for
various reasons. This means that we initially had 31 participants working, and
fewer at the end of the program.

31

https://github.com/NixOS/nix/pull/5364
https://github.com/NixOS/nixos-search/pull/360
https://github.com/nprindle/nix-parsec/pull/4
https://github.com/NixOS/rfcs/pull/99
https://github.com/NixOS/rfcs/pull/100
https://github.com/nix-community/home-manager/issues/2251
https://github.com/seppeljordan/nix-prefetch-github/issues/40
https://github.com/NixOS/nix/issues/5169
https://github.com/NixOS/nix/pull/5286
https://github.com/NixOS/nix/pull/5163#issuecomment-924488262
https://github.com/Mic92/nixos-shell/pull/41
https://github.com/bytefury/crater/issues/578
https://github.com/bytefury/crater/pull/579
https://github.com/YosysHQ/prjtrellis/pull/178
https://github.com/unbit/uwsgi-docs/pull/499
https://github.com/celery/celery/pull/6988
https://github.com/electron/electron/issues/31121
https://github.com/Mazurel/android2nix


4 Feedback

We organized four open feedback sessions after Summer of Nix to gather
thoughts about the program from the perspective of participants and mentors
— ultimately the core groups of the program.

The overall experience was diverse, mostly positive, but also different from
person to person and team to team. Some wider aspects of the program were
universally seen as positive, and their absence regretted where their implemen-
tation in practise did not work out:

• Participants universally appreciated in particular the team experience,
active communication, and not working alone. Some teams fared
much better here than others, providing lively discussions, a weekly
rhythm, and a good support structure. But even in these teams, moments
when participants, in particular those with less Nix experience, had to
work alone on a package were seen as difficult. Other teams were much
quieter and therefore the participants had a harder time. Similarly, from
the mentor perspective a quieter team with star-shaped communication
instead of a horizontal support structure meant more work for the mentor
because they were the principal counterpart for all team members. The
same theme, either appreciation of good support communication or the
lack of it, came up in various aspects: Some participants felt lost and, on
the other hand, mentors said that they had trouble of getting participants
to ask for help early when they were blocked. It is thus not surprising that
all participants appreciated pair programming sessions, which we later-
on in the programming organized via two random, cross-team pairings
per week, and lamented their lack in the beginning of the program. To
summarize, it seems team work sometimes went very well, sometimes not,
and while it did not go badly, there is certainly room for improvement.

• The centrally organized presentations about the fundamentals of Nix by
core developers, with an interactive Q&A session attached, were men-
tioned as highlights of the program. This was certainly not only due to
the quality of content, but also due to the fact that this was a moment
of community and also something that, similar to regular team meetings,
gave a certain rhythm to the program. Rhythm and structure was a
central aspect of the feedback in general. It seems that more rhythm and
structure would have been beneficial. Presentations, team meetings, and
then later-on cross-team pairing sessions were all appreciated. In addition
it was mentioned that motivation tapered off towards the end of the pro-
gram, which might have been less pronounced if there were events like a
closing ceremony to work towards. We discussed but did not conduct final
presentations. A mentor mentioned that the first week was very busy, so
that they were barely able to work on their day job, and after a while the
team got bored and work tapered off.

• Work distribution was another central aspect that generated some frustra-
tion: although the general assign-and-trade approach worked fine, some
larger package families, that is, packages from a similar programming lan-
guage or software ecosystem, were spread across teams. It took a while
to all bring them to the same people to tackle them jointly. And with the
GitHub issue list alone it was difficult to see whoworked on what and when.
Furthermore, some participants would have liked to specialize on packag-
ing software written in specific programming languages and we had no
notion of that in our work distribution. On the other hand, we had the
impression that some also enjoyed peeking into diverse and new technol-
ogy. Probably a common denominator was that there was a perceived lack

32



of ecosystem-oriented communication beyond team boundaries, such as a
simple Matrix channel to discuss JavaScript packaging, so that every one
has an opportunity to follow their tech interests.

• Another aspect related to motivation were the actual packages we worked
on. Some of them, such as Jitsi, BigBlueButton, Arpa2 are very big,
well-known tools, but sometimes demotivating because they are difficult
to package due to their size and complexity. Inversely, others were small,
prototype-like tools without regular maintenance, where the question
came up why we were spending time on them. Many felt that it would
be worth investing more time in central projects for the Nix community
that simplify packaging in general. This became particularly clear when
similar questions came up over and over from different participants. It
was frustrating not to work on improving those directly. We somewhat
allowed this, if it directly or indirectly helped for NGI packages and if
someone had already worked on many “official” packages. But we did not
encourage it either, because we were bound by the goals of the funding
grant. A clear answer to why we are working on something would
have been appreciated.

• Some participants spent a significant amount of time on non-Nix and non-
code tasks, querying upstream maintainers and such. Few actually liked
this part of the work and would have appreciated contacting project up-
stream maintainers beforehand to get cleaner task descriptions, or sup-
port with communication skills and what someone called “software archae-
ology.” Some packages were also just not possible to package, e.g. due to
being hardware related, and it was puzzling for some to be assigned to do
something which is not possible. Clearer task descriptions would have
been appropriate.

• we had no formal roles in Summer of Nix, besides participants, mentors
and administration. However, some participants did take initiative and
responsibility to organize things such as recording all presentations and
distributing them, hosting code and chat sessions, and more. Some were
sliding into these roles, and would have appreciated a more structured
role distribution to know clearly what their tasks would be.

• Some aspects of the packaging workflow and work organization were not
ideal. For example, the choice between external and internal Nix flakes,
and between separate repositories and a big monorepo.

Then a few points about Nix came up:

• The Nix documentation was universally seen as difficult to read on many
aspects.

• Mediocre support for various ecosystems and bugs, and lack of documen-
tation, templates, and tutorials on how to use the various lang2nix tools.
Simply finding and picking the right tool was a challenge as well because
there is no unified documentation or recommendation, and there exists
many tools with similar purpose and naming. Specific ecosystems that
were mentioned are: Racket, Java, Android, and JavaScript.

• Nix flakes restrictions were not a problem because it was part of the learn-
ing experience

Notes and suggestions from mentors:

• Expect lots of similar questions: how to do overlays, how to do X. Also on
ecosystems and tooling. Explain common themes such as lang2nix, ser-
vices, nixos-container, modules, caches/Hydra to participants.

33



• Get people to communicate, ideally in GitHub issues, but some feel it it
very permanent and thus do not use it. Matrix is less overhead, easier,
less formal and might be necessary to jump-start working.

• Some are afraid to ask for help. Foster a culture of open exchange, orga-
nize a regular checkin with report on yesterday, plan for today, blockers.

• Explain programming vs. packaging skills: communication and software
archaeology.

• Show and help how to “sell” Nix adoption to upstream

Concrete ideas for a future edition:

• The introduction system (having a suggestion of two people to meet per
week) was very successful. If possible it should start at the beginning. This
is one way that you can find other people that might help you when you
get stuck.

• If some people become long time members of the Nix community that is a
success.

• Clearer rules about the general and the off-topic channels in the chat.
Many participants were in there and the rooms were flooded by messages.

• External communication in the form of blog posts would be great and also
motivating. We only published a single article and did not encourage this
much.

• Assign multiple people per package. It was amazing to collaborate with
others on packages.

• Get common compute resources, e.g. from a cloud provider, and actually
have the service running on servers maintained by program organizers or
participants would be great .

• Facilitator for pairing meetings would be great because meetings were
perceived as very beneficial.

• Move to external Nix flakes and a monorepo, or a metaflake .
• Have an official internal documentation/timesheet page per participant
• Have both, teams (time zones) and cross-team communities of interest
(language/ecosystem)

• Better upfront issue and team assignment
• Use automatic ryantm-style update PRs or CI

– e.g.: https://github.com/DeterminateSystems/update-flake-lock
• Make use of the content or experiences that we make during the program.
For example, publish the presentations and produce quality content for
the community.

• Staggered beginning to handle the initial workload
• Build better onboarding material, similar to the Rustlang book, but for Nix
• Permanent Jitsi channel for spontaneous encounters
• Every participant could give half an hour to explain sometime for other
participants on any topic so that they have to learn about it and that there
is more exchange cross-teams

• Include work on upstream documentation as part of project tasks
• Part of Summer of Nix could be about getting commit permissions for

nixpkgs
• Summer of Nix could prepare participants for a NixCon conference talk
• Work outside of NGI would be interesting. Summer of Nix should be more
than NGI. Companies could submit projects to this event. Call for projects?

• Organizing marketing with an aesthetic dimension could also be interest-
ing. Community manager could organize some polls or games. If too many
diverse people are working on documentation, writing blog posts etc., new
users can be lost quickly due to different styles and so on.

34



• Have a follow-up period with a second stipend to write. Provide profes-
sional support with that.

• One “tech mentor” per programming language. The mentors were really
helpful and knowledgeable, but we felt that our problem were very pro-
gramming language specific (e.g. “I’m getting this weird error with some
JavaScript package, what do I do?”). Having a mentor of reference with
experience in a particular area of the ecosystemwould be quite helpful. Po-
tentially there could be a Java mentor, a JavaScript mentor, a C mentor…
One of the most frustrating points was getting stuck, and having somebody
who experienced particular problems would have been very helpful. Note
that we think the mentors did a great job, this could just be the cherry on
the cake.

• Take interests into account when making teams. Some people have an
affinity/experience for some a programming language, trying to make
teams that are interested in the same area (i.e. the Rust team) could lead
to synergies (people sharing useful information they found about a certain
thing) and more resilience to frustration (“I like Rust so I will work harder
to make this work”). Of course some teams might be more crowded
than others, but that could be another criteria to select participants
(e.g. “We don’t have space in the Rust team unfortunately, but would
you be interested in joining the JavaScript team?”). Note that you could
have a team interested in Rust, but within the team some people are
experienced with Python, and so you could give them a Python and Rust
package. It will also improve the willingness to maintain a package in the
long-term in case someone is interested in the technologies. The teams
were formed by geography — we are not sure it’ is important, as long as
time zones overlap by 4 hours during the day, and it should be enough to
enable all the required meetings.

• Another, more basic nixos-module presentation. The nixos-module presen-
tation was truly on another level. However it dealt with abstract informa-
tion around the nixos-modules. There should be a “boring” presentation
that goes through some existing modules and explains what is happening
(e.g.”systemd has a requires attribute that does…“,”In this module you can
see how to initialise a database”). All this information can be of course
found in nixpkgs, but a detail of the most common “tricks” might go a long
way.

• Pre-screening the packages for unmaintained ones. It was confusing to
see unmaintained packages in issues. Pre-screening for only the relevant
packages might improve the motivation of participants. Getting stuck on
a maintained package is one thing. Getting stuck on something that feels
it will never be used anyway reduces motivation significantly.

• Organise a pre-packaging effort to help upstream projects to be easier to
package.

• New participant role “community manager”: someone who animates the
Summer of Nix community, organizing discussions, polls, games.

• New participant role “pairing partner”: experienced Nixer available for
pairing.

• New role “web master|: someone who administers an open website on
a repository where everyone can contribute. Move website to static site
generator.

35



5 Budget

We delivered Summer of Nix slightly under budget, because of a few partici-
pants leaving prematurely and some who decided to volunteer and leave the
money in the original pool. The anticipated budget for all of this work was
131,755€. The final expenses amounted to 107,700€, including mentor and
participant stipends, as well as extra costs for material and organization.

6 Conclusions

Overall, I am quite happy with how the program turned out. We knew that
we had a tight time budget for organization and also limited experience, but
we also knew that we had a unique opportunity with pre-existing budget and a
group of people interested in doing an event. Under these constraints — and
we hope this report makes it clear that organization is “the art of the possible”
within constraints — after gathering the data, we are amazed about what we
have accomplished.

Despite highs and lows, it appears to have been an overall fun and enriching
event for participants. Much of the feedback on possible improvements can be
traced back to a lack of time on the organizational side, the fact that we were
designing this program from scratch, and that everyone was new in their re-
spective roles. We expected that this would be the case the first time. There
was little concern about the general idea and set up of the program, and the
principal goals of the program. Learn, meet, deliver seemed to be appreci-
ated, as well as working with FOSS software, and also the implementation of
these principles wherever it worked well.

Independent of the work output, a measure of success for the Summer of Nix
for us was whether we can bring new long term members to the community
— maybe even professionally, and certainly we succeeded with some in this
regard.

In our view, a future edition should therefore focus on improving the implemen-
tation and organization of the program to make most out of everyone’s valuable
time. Judging from the feedback sessions and personal conversations, there is
good consensus on what could be improved. The main bottleneck to actually do
so are the organizational capacities that we have to realize these ideas under
budget and other constraints. Distributed decision making will be central to
achieve this. However, one central constraint, that we were all newcomers to
designing such a program, is now overcome, and should immediately improve
the situation.

All in all, we hope that together we were able to make a substantial and lasting
contribution to the Free and Open Source Software ecosystem, and that we can
continue to doing so in a variety of forms.

7 Acknowledgements

I am really grateful to have been given the chance and trust to organize this
program by my employer Tweag, the NixOS and NLnet Foundations, the Euro-
pean Commission, and especially by the participants, mentors, and volunteers
who actually ran this program and in the end achieved an amazing amount of
contributions.

36



A lot of people, colleagues, participants, mentors and co-organizers, gave com-
ments on this report which was very helpful. I hope it can form a basis of
discussion for future events and also help make transparent how the funding
behind this project was invested.

References
“Nix: A Safe and Policy-Free System for Software Deployment.” n.d.
European Commission. “The European Commission’s Open Source Strategy
for 2020-2023,” n.d. https://ec.europa.eu/info/sites/default/files/en_ec_
open_source_strategy_2020-2023.pdf.

———. “What the European Commission Does,” n.d. https://ec.europa.eu/info/
about-european-commission/what-european-commission-does_en.

Google. “Google Summer of Code,” n.d. https://summerofcode.withgoogle.
com/.

Nixos Community. “NixOS Website,” n.d. https://nixos.org/guides/how-nix-
works.html.

NixOS Foundation. “Mission Statement,” n.d. https://github.com/NixOS/nixos-
foundation.

NLnet. “Foundation Website,” n.d. https://nlnet.nl/.
Roberto Di Cosmo et al. “The European Mancoosi Research Project on Manag-
ing Software Complexity,” n.d. https://www.mancoosi.org/.

The Next Generation Internet website. “About Ngi0,” n.d. https://www.ngi.eu/
ngi-projects/ngi-zero/.

———. “About the NGI Initiative,” n.d. https://www.ngi.eu/about/.
The NixOS discourse. “The Summer of Nix—Learn NixWhile Doing Useful, Paid
Work,” n.d. https://discourse.nixos.org/t/the-summer-of-nix-learn-nix-while-
doing-useful-paid-work/12225.

Tweag. “Company Website,” n.d. https://tweag.io.
YouTube. “Cynical Remarks by Linus Torvalds,” n.d. https://youtu.be/
Pzl1B7nB9Kc.

37

https://ec.europa.eu/info/sites/default/files/en_ec_open_source_strategy_2020-2023.pdf
https://ec.europa.eu/info/sites/default/files/en_ec_open_source_strategy_2020-2023.pdf
https://ec.europa.eu/info/about-european-commission/what-european-commission-does_en
https://ec.europa.eu/info/about-european-commission/what-european-commission-does_en
https://summerofcode.withgoogle.com/
https://summerofcode.withgoogle.com/
https://nixos.org/guides/how-nix-works.html
https://nixos.org/guides/how-nix-works.html
https://github.com/NixOS/nixos-foundation
https://github.com/NixOS/nixos-foundation
https://nlnet.nl/
https://www.mancoosi.org/
https://www.ngi.eu/ngi-projects/ngi-zero/
https://www.ngi.eu/ngi-projects/ngi-zero/
https://www.ngi.eu/about/
https://discourse.nixos.org/t/the-summer-of-nix-learn-nix-while-doing-useful-paid-work/12225
https://discourse.nixos.org/t/the-summer-of-nix-learn-nix-while-doing-useful-paid-work/12225
https://tweag.io
https://youtu.be/Pzl1B7nB9Kc
https://youtu.be/Pzl1B7nB9Kc

	Context
	Free and Open Source Software in a complexity crisis
	Institutions and their interest in the Summer of Nix

	Designing and running Summer of Nix
	The idea emerges
	Fixing the basics: compensation and time frame
	Announcement and interviews
	Total number of seats, selection process and team building
	Timeline, task distribution, events and start
	Tooling
	The program runs
	The hiring event

	Contributions
	Code contributions — summary statistics
	Contribution list
	Namecoin package
	Kazarma
	Lemmy
	PeerTube
	Hyperspace
	GnuNet
	Interpeer
	KiwiIRC
	TCN
	Corteza
	Blink
	Castopod
	Jitsi ecosystem
	Liberaforms
	Etesync
	liboqs
	Milagro
	Software Heritage
	DiffPrivacyInference
	Kaidan
	Weblate
	LibreSOC
	Coriolis
	Meta Press
	OpenFoodFacts
	Nyxt
	ForgeFed
	CVEHound
	trackingthetrackers
	movim
	url-frontier
	Katzenpost
	Variation Graph
	Xemu for MEGA65 Phone
	rebuilderd
	ricochet
	poliscoops
	GoatCounter
	Simple Bandwidth Scanner (OnBaSca)
	NetFilter
	Bitcoin Transactions
	Anastasis
	GNU Taler
	Arpa2
	P2Pcollab
	CWE checker
	Manyverse
	EEZ ecosystem
	DNSSEC
	URLExtract
	Owncast
	BigBlueButton
	Briar
	elRepo.io
	IMSI Pseudonymization
	Conversations
	Reowulft
	Mailpile
	mobile-nixos
	OSX-KVM
	Waasabi
	Wireguard
	SearX
	PCB-rnd
	Noise Explorer
	Universal Resolver
	IRMA
	Delta Chat
	IPFS and IPFS Search
	Meilisearch
	Cryptpad
	Sonar
	Webshell
	Misskey
	EgilSCIM
	Other flakes on the ngi organization
	2nix tooling
	Flake templates
	Other nixpkgs contributions
	Other Nix contributions
	Other

	Non-code contributions
	Outcome for the participants

	Feedback
	Budget
	Conclusions
	Acknowledgements
	References

